Bootstrap
  E.E.A. .com
It doesn't have to be difficult if someone just explains it right.

Calculator

For the Euclidean Algorithm, Extended Euclidean Algorithm and multiplicative inverse.

Before you use this calculator

If you're used to a different notation, the output of the calculator might confuse you at first.
Even though this is basically the same as the notation you expect. If that happens, don't panic.
Just make sure to have a look the following pages first and then it will all make sense:


Input

Algorithm

Choose which algorithm you would like to use.

Numbers

Enter the input numbers. Note that you need to enter n before b.
E.g. if you want to know the multiplicative inverse of 26 mod 11, then use n=11 and b=26.

n=
b=


Output

This is the calculation for finding the multiplicative inverse of 474306 mod 415 using the Extended Euclidean Algorithm:
nbqr t1t2t3
4154743060415010
4743064151142376101
41537613901-1
376399251-110
3925114-110-11
251411110-1121
141113-1121-32
1133221-32117
3211-32117-149
2120117-149415
Answer

So t = -149. Now we still have to apply mod n to that number:
-149 mod 415 ≡ 266
So the multiplicative inverse of 474306 modulo 415 is 266.

Verification

Let i be the answer we just found, so i=266. We also have b=474306 and n=415.
If our answer is correct, then i × b (mod n) ≡ 1 (mod n).
Let's see if that's indeed the case.
i × b (mod n) ≡
266 × 474306 (mod 415) ≡
126165396 (mod 415) ≡
1 (mod 415)